JOURNAL OF **CHEMICAL &** ENGINEERING **DATA**

Densities, Partial Molar Volumes at Infinite Dilution, Side-Chain Partial Molar Volumes, and Transfer Volumes of Dipeptides in Sucrose and 2,3-Butanediol Aqueous Solutions at T = (283.15 to 333.15) K

Nandhibatla V. Sastry,* Pinakin H. Valand, and Pradip M. Macwan

Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India

ABSTRACT: Apparent molar volumes and partial molar volumes at infinite dilution, \overline{V}_{22}^{o} for dipeptides (glycyl glycine, glycyl valine, glycyl leucine, glycyl phenylalanine, and glycyl asparagine) in aqueous sucrose and 2,3-butanediol solutions have been calculated from the measured densities in the temperature range of T = (283.15 to 333.15) K. Side-chain partial molar volumes, $\overline{V}_{2,tr}^{\circ}$, and transfer volumes, ΔV_{tr}^{o} for the dipeptides and side chains from water to aqueous additive environment have been calculated and analyzed in terms of possible solute-water, solute-cosolute, and cosolute-water interactions.

■ INTRODUCTION

Proteins are large complex biopolymers formed by peptide linkage between amino acid chains in a sequential manner. The knowledge of stability and conformational state of proteins in aqueous solution is of paramount importance in understanding their structure and specific enzymatic functions or activity.¹ The origin of protein stability in aqueous solutions is traced to the solute (protein amino acid side chain)-solvent (mostly water) interactions. The extent of these interactions are influenced by several structural and steric factors of the solute molecules and also by the nature of the solvent media, that is, whether it is pure water or contain electrolytic or nonelectrolytic additives. To study the stability of proteins experimentally, their native structure is disrupted by adding denaturants. The process of denaturation converts the native folded structure in to a form that is predominantly unfolded but still with some residual folded structure. Thus the studies with ideal conformational state of proteins are experimentally not feasible. A greater understanding of the properties of the proteins is only possible by studying the model systems of peptides with shortest of the possible chains. It is also often reported that the presence of cosolutes like sugars, polyhydroxyalcohols, nonelectrolytes such as urea, and surfactants decrease the denaturation ability of certain proteins.²⁻³ Whether the diminished denaturation ability of protein is due to the direct binding of denaturants, for example, polyhydroxy compounds or sugars with protein molecules, or indirectly through alteration of water structure is still not known definitely. Simple amino acids and di- and tripeptides are some of the best model compounds to represent the shortened protein forms. A literature survey shows that the effects due to solute-solvent interactions in the aqueous solutions of several of the amino acids or di- or tripeptides have been monitored through the measurements of various thermophysical quantities based on volumetric, speed of sound, and transport properties. In contrast to numerous reports on the above systems, there are only few studies dealing with amino acid or short chain peptides in aqueous solutions of nonelectrolytes. For example, the integral enthalpies,^{6,7} molar enthalpies,⁸ heat capacities,^{9,10} apparent

molar volumes, $^{9-15}$ viscosities, 12,14 and speeds of sound 16 of some amino acids, $^{6-8,11-16}$ dipeptides, 9 and oligopeptides 10 in aqueous solutions and in the presence of additives such as glycerol,¹¹ 1,2-propanediol,¹² *t*-butanol,⁶ urea,^{8–10} and sugars^{13–15} have been measured to calculate both partial molar properties as well as their limiting values and estimate the respective transfer functions corresponding to the change from water to aqueous additive environment. It has been suggested that the interactions between the hydrophilic-ionic groups, hydrophilic-hydrophilic groups, and hydrophilic-hydrophobic groups of the additive and amino acids predominate and contribute to the transfer functions. To know whether which one or combination of the interactions among the solute-solute, solute-solvent (water), solute-cosolute (additive), and cosolute-solvent contribute to the overall properties in such mixed complex systems, the experimental data on the thermophysical properties of simple dipeptides (with different side chains) in aqueous solutions of hydrophilic additives in identical conditions are highly useful. Since all biochemical processes occur in aqueous media, the data on thermophysical properties of dipeptides are of special interest to understand the stability of complex biological molecules.

Keeping this utility in mind and also looking into the scarcity of the data on various thermophysical properties of complex ternary systems of dipeptide-additive-water, the paper reports the new experimental data of densities for five dipeptides, namely, GlyGly, GlyVal, GlyLeu, GlyPhe, and GlyAsn in aqueous solutions containing sucrose and 2,3-butanediol at T = (283.15 to)333.15) K. The reason behind selecting these dipeptides is as follows. GlyGly has the simplest structure of the protein forms and is often taken as a reference for estimating the properties of the side chains typically present in large proteins. GlyVal and GlyLeu have aliphatic isopropyl and isobutyl side chains, while chains in GlyPhe are of aromatic type. GlyAsn has a carboxylamide moiety. Therefore, it is thought to be worthwhile to study these systems and estimate the partial molar volumes of different

Received: July 1, 2010 Accepted: January 14, 2011 Published: February 04, 2011

Table 1. Densities of Water, Sucrose, and 2,3-Butanediol Aqueous Solutions at Different Temperatures

Т	ρ/g	$s \cdot cm^{-3}$	ρ/g	$\cdot \text{cm}^{-3}$	$\rho/g \cdot cm^{-3}$			
K	exp.	lit. ^a .	exp.	lit.	exp.			
	W	ater	5 % (w/w	v) Sucrose	10 % (w/v	w) Sucrose		
283.15	0.999701	0.999699	1.020650		1.040432			
293.15	0.998203	0.998203	1.018840		1.038341			
298.15			1.017501	1.017018^{b}	1.036980	1.032485^{b}		
303.15	0.995647	0.995645	1.016042		1.035325			
313.15	0.992214	0.992212	1.012432		1.031436			
323.15	0.988032	0.988030	1.008092		1.026662			
333.15	0.983193	0.983191	1.002961		1.020722			
	20 % (w/	w) Sucrose	5% (w/w) 2	,3-Butanediol				
283.15	1.083813		1.002001					
293.15	1.080456		1.000325					
298.15	1.078769	1.061987^{b}						
303.15	1.077111		0.997603					
313.15	1.073742		0.994005					
323.15	1.070410		0.989660					
333.15	1.067101		0.984675					
^a Ref 20. ^b Interpola	ted values from ref 2	1.						

Table 2. Densities (ρ) for Dipeptides Aqueous Solutions as a Function of Molality, *m*, in mol·kg⁻¹ at Different Temperatures

т		$\rho/g \cdot cm^{-3}$					т				$ ho/g\cdot cm^{-3}$			
T/K	283.15	293.15	303.15	313.15	323.15	333.15		283.15	293.15	303.15	313.15	323.15	333.15	
			Gly	'Gly						Gly	rVal			
0.0100	1.000274	0.998763	0.996198	0.992760	0.988569	0.983723	0.0099	1.000277	0.998772	0.996206	0.992763	0.988562	0.983712	
0.0500	1.002557	1.000992	0.998390	0.994932	0.990704	0.985829	0.0250	1.001153	0.999636	0.997055	0.993598	0.989368	0.984501	
0.1501	1.008189	1.006482	1.003784	1.000274	0.995963	0.991013	0.0400	1.002019	1.000490	0.997894	0.994424	0.990165	0.985282	
0.2502	1.013708	1.011848	1.009051	1.005483	1.001105	0.996072	0.0749	1.004020	1.002461	0.999832	0.996332	0.992006	0.987086	
0.5003	1.027030	1.024728	1.021672	1.017940	1.013449	1.008195	0.0999	1.005441	1.003859	1.001208	0.997686	0.993313	0.988368	
0.9994	1.051688	1.048299	1.044661	1.040518	1.036046	1.030266	0.1199	1.006572	1.004969	1.002301	0.998764	0.994353	0.989387	
			Gly	Leu						Gly	Phe			
0.0100			0.996133	0.992686	0.988502	0.983654	0.0100	1.000400	0.998880	0.996315	0.992869	0.988688	0.983842	
0.0199			0.996611	0.993151	0.988965	0.984109	0.0200	1.001096	0.999555	0.996980	0.993521	0.989340	0.984489	
0.0399			0.997569	0.994086	0.989892	0.985021	0.0401	1.002488	1.000905	0.998308	0.994825	0.990641	0.985780	
0.0599			0.998518	0.995013	0.990808	0.985924	0.0601	1.003862	1.002239	0.999617	0.996112	0.991923	0.987053	
0.0799			0.999456	0.995932	0.991713	0.986818	0.0801	1.005227	1.003565	1.000915	0.997390	0.993191	0.988315	
0.0998			1.000378	0.996839	0.992604	0.987699	0.1001	1.006580	1.004881	1.002203	0.998659	0.994447	0.989567	
			Gly	Asn										
0.0100			0.996431	0.992988	0.988799	0.983949								
0.0250			0.997602	0.994145	0.989944	0.985078								
0.0400			0.998769	0.995296	0.991084	0.986202								
0.0750			1.001471	0.997962	0.993721	0.988801								
0.1000			1.003384	0.999849	0.995587	0.990640								
0.1300			1.005662	1.002094	0.997805	0.992826								

side chains and calculate the volumes of transfer due to change in solvent environment, that is, from aqueous to additive solutions. The sign and magnitude of transfer volumes would indicate the effect of the given side chain on the nature of solute—solvent interactions. A wide range of temperature for the measurements is selected to explore how volumetric properties are affected by the possible change in conformational equilibrium within dipeptide molecules¹⁷ in dilute aqueous solutions. Moreover, the hydrophobic hydration effects especially caused by alkyl side chains are also sensitive to temperatures,^{18,19} and therefore, temperature-dependent side chain volumes and their transfer functions are also of great utility.

The partial molar volumes at infinite dilution and at different temperatures were calculated from the experimental density data.

Table 3. Densities (ρ) for Dipeptides in Sucrose and 2,3-Butanediol Aqueous Solutions as a Function of Molality, *m*, in mol·kg⁻¹ at Different Temperatures

т			ho/g .	cm^{-3}			т			ρ/g·	cm^{-3}		
T/K	283.15	293.15	303.15	313.15	323.15	333.15		283.15	293.15	303.15	313.15	323.15	333.15
,													
						5%	(w/w) Suc	crose					
			Gly	Gly						Gly	Val		
0.0101	1.021218	1.019399	1.016591	1.012973	1.008627	1.003488	0.0100	1.021217	1.019402	1.016593	1.012971	1.008614	1.003468
0.0503	1.023466	1.021610	1.018763	1.015124	1.010746	1.005573	0.0250	1.022063	1.020242	1.017417	1.013775	1.009393	1.004227
0.1509	1.029001	1.027052	1.024113	1.020423	1.015964	1.010/13	0.0399	1.022899	1.0210/1	1.018230	1.0145/1	1.010162	1.004976
0.2516	1.034411	1.0323/5	1.029345	1.025607	1.0210/0	1.015/49	0.0749	1.024844	1.023000	1.020123	1.016426	1.011954	1.006/23
1.0042	1.04/381	1.045155	1.041892	1.038055	1.055944	1.02/805	0.0998	1.020210	1.024358	1.021450	1.01//32	1.013214	1.00/955
1.0003	1.071000	1.008458	1.004675	1.000904	1.055844	1.030217	0.1290	1.02/840	1.023973	1.023043	1.019295	1.014/1/	1.009420
			Gly	Leu						Gly	Phe		
0.0100			1.016518	1.012901	1.008558	1.003417	0.0100	1.021366	1.019535	1.016719	1.013084	1.008741	1.003609
0.0200			1.016993	1.013367	1.009022	1.003872	0.0200	1.022080	1.020226	1.017394	1.013734	1.009388	1.004255
0.0400			1.01/936	1.014296	1.009943	1.004//6	0.0400	1.023498	1.021601	1.018/35	1.015027	1.010672	1.005539
0.0600			1.0188/1	1.015217	1.010857	1.0056/3	0.0601	1.024911	1.022970	1.020072	1.010310	1.011952	1.006819
0.0800			1.019/98	1.017038	1.011/02	1.000302	0.0801	1.020505	1.024521	1.021392	1.01/369	1.013214	1.000082
0.1000			1.020/18	1.01/038	1.012000	1.00/443	0.1001	1.02/088	1.023039	1.022/01	1.018852	1.014400	1.009330
			Gly	Asn									
0.0100			1.016793	1.013174	1.008829	1.003687							
0.0250			1.017914	1.014281	1.009928	1.004770							
0.0400			1.019030	1.015384	1.011022	1.005847							
0.0750			1.021010	1.01/933	1.015349	1.008338							
0.1300			1.025402	1.021877	1.017451	1.012183							
0.1500			1.025002	1.021077	1.017 101	1.012105							
						10%	(w/w) Su	crose					
			Gly	Gly						Gly	Val		
0.0103				,						,			
0.0105	1.041003	1.038903	1.035871	1.031972	1.027194	1.021243	0.0101	1.040984	1.038882	1.035855	1.031958	1.027166	1.021232
0.0105	1.041003 1.043273	1.038903 1.041142	1.035871 1.038063	1.031972 1.034125	1.027194 1.029317	1.021243 1.023324	0.0101 0.0253	1.040984 1.041812	1.038882 1.039692	1.035855 1.036650	1.031958 1.032742	1.027166 1.027924	1.021232 1.021948
0.0515 0.1545	1.041003 1.043273 1.048851	1.038903 1.041142 1.046647	1.035871 1.038063 1.043453	1.031972 1.034125 1.039422	1.027194 1.029317 1.034538	1.021243 1.023324 1.028441	0.0101 0.0253 0.0405	1.040984 1.041812 1.042636	1.038882 1.039692 1.040498	1.035855 1.036650 1.037440	1.031958 1.032742 1.033521	1.027166 1.027924 1.028678	1.021232 1.021948 1.022681
0.0515 0.1545 0.2575	1.041003 1.043273 1.048851 1.054294	1.038903 1.041142 1.046647 1.052018	1.035871 1.038063 1.043453 1.048716	1.031972 1.034125 1.039422 1.044594	1.027194 1.029317 1.034538 1.039639	1.021243 1.023324 1.028441 1.033439	0.0101 0.0253 0.0405 0.0759	1.040984 1.041812 1.042636 1.044542	1.038882 1.039692 1.040498 1.042360	1.035855 1.036650 1.037440 1.039265	1.031958 1.032742 1.033521 1.035323	1.027166 1.027924 1.028678 1.030420	1.021232 1.021948 1.022681 1.024373
0.0515 0.1545 0.2575 0.5149	1.041003 1.043273 1.048851 1.054294 1.067327	1.038903 1.041142 1.046647 1.052018 1.064888	1.035871 1.038063 1.043453 1.048716 1.061326	1.031972 1.034125 1.039422 1.044594 1.056997	1.027194 1.029317 1.034538 1.039639 1.051868	1.021243 1.023324 1.028441 1.033439 1.045417	0.0101 0.0253 0.0405 0.0759 0.1012	1.040984 1.041812 1.042636 1.044542 1.045892	1.038882 1.039692 1.040498 1.042360 1.043676	1.035855 1.036650 1.037440 1.039265 1.040557	1.031958 1.032742 1.033521 1.035323 1.036599	1.027166 1.027924 1.028678 1.030420 1.031653	1.021232 1.021948 1.022681 1.024373 1.025570
0.0515 0.1545 0.2575 0.5149 1.0298	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997
0.05103 0.0515 0.1545 0.2575 0.5149 1.0298	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997
0.0103 0.0515 0.1545 0.2575 0.5149 1.0298	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997
0.0103 0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.033205	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047493 1.041117 1.041799 1.043155	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly: 1.035956 1.036585 1.037834	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.033914	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960 1.023188
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.032205 1.034076	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.0471117 1.041117 1.041799 1.043155 1.044493 1.045977	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.035956 1.036585 1.037834 1.039066	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.033914 1.035130	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0400 0.0600 0.0800	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.03205 1.034076 1.034940 1.035704	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024055	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.041117 1.041799 1.043155 1.044493 1.045827	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960 1.023188 1.024398 1.025604
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.032324 1.03205 1.034076 1.034940 1.035794	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981	1.021243 1.02324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.041117 1.041799 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027891 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960 1.023188 1.024398 1.025604 1.025604
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.033205 1.034076 1.034940 1.035794 Asn	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.04717 1.041117 1.041799 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly: 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021348 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.0800 0.1000	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.033205 1.034076 1.034940 1.035794 Asn 1.032164	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.0800 0.1000 0.0250	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.033205 1.034076 1.034940 1.035794 Asn 1.032164 1.033250	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398 1.025604 1.025604
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000 0.0800 0.1000 0.0250 0.0400 0.0250	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.032324 1.03205 1.034076 1.034940 1.035794 Asn 1.032164 1.033250 1.034330 1.034330	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.027383 1.028460 1.029530	1.021243 1.02324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.021432 1.022493 1.022493	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.041117 1.041799 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.033521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000 0.0800 0.1000 0.0250 0.0400 0.0250 0.0400 0.0749 0.0988	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250 1.040770 1.042557	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.032324 1.032324 1.032325 1.034076 1.034940 1.035794 Asn 1.032164 1.033250 1.034330 1.036822 1.036822	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.027383 1.028460 1.029530 1.031993 1.033734	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.022493 1.0225975 1.025975	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly: 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.0800 0.0800 0.0800 0.0100 0.0250 0.0400 0.0250 0.0400 0.0250 0.0400 0.0749 0.0999 0.1299	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250 1.040770 1.042557 1.044680	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.03205 1.034076 1.034940 1.035794 Asn 1.032164 1.032164 1.032250 1.034330 1.034330 1.036822 1.038587 1.040684	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.027383 1.028460 1.029530 1.031993 1.033734 1.03580	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.022493 1.023547 1.025975 1.027695 1.029734	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.035130 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.0800 0.0800 0.0800 0.0000 0.0250 0.0400 0.0250 0.0400 0.0250 0.0400 0.0749 0.0999 0.1299	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250 1.040770 1.042557 1.044680	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.03205 1.034076 1.034940 1.035794 Asn 1.032164 1.032164 1.032250 1.034330 1.034330 1.036822 1.038587 1.040684	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.028460 1.029530 1.031993 1.033734 1.035801	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.022493 1.022547 1.025975 1.027695 1.027695	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000 0.0800 0.1000 0.0250 0.0400 0.0749 0.0999 0.1299	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250 1.040770 1.042557 1.044680	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.03205 1.034076 1.034940 1.035794 Asn 1.032164 1.033250 1.034330 1.034330 1.036822 1.038587 1.040684	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.027383 1.028460 1.029530 1.031993 1.033734 1.035801	1.021243 1.02324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.025975 1.025975 1.027695 1.02734	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.041117 1.041799 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.033914 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021960 1.023188 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.1000 0.0800 0.1000 0.0250 0.0400 0.0250 0.0400 0.0250 0.0400 0.0749 0.0999 0.1299	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.038861 1.039726 Gly 1.036060 1.037158 1.038250 1.040770 1.042557 1.044680	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.033205 1.034076 1.034076 1.034940 1.035794 Asn 1.032164 1.03250 1.034330 1.036822 1.036822 1.038587 1.040684 Gly	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.030981 1.027383 1.027383 1.027383 1.028460 1.029530 1.031993 1.033734 1.035801	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.022493 1.025975 1.027695 1.029734 20%	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.047493 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	1.035855 1.036650 1.037440 1.039265 1.040557 1.042089 Gly 1.035956 1.036585 1.037834 1.039066 1.040294 1.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.035130 1.036342 1.037544	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021348 1.024398 1.025604 1.026800
0.0515 0.1545 0.2575 0.5149 1.0298 0.0100 0.0200 0.0400 0.0600 0.0800 0.0800 0.0800 0.0800 0.0800 0.0250 0.0400 0.0250 0.0400 0.0250 0.0400 0.0250 0.0400	1.041003 1.043273 1.048851 1.054294 1.067327 1.091054	1.038903 1.041142 1.046647 1.052018 1.064888 1.088352	1.035871 1.038063 1.043453 1.048716 1.061326 1.084364 Gly 1.035774 1.036220 1.037109 1.037989 1.037989 1.037989 1.037989 1.037986 Gly 1.036060 1.037158 1.038250 1.040770 1.044680 Gly 1.077620	1.031972 1.034125 1.039422 1.044594 1.056997 1.079665 Leu 1.031881 1.032324 1.03205 1.034076 1.034076 1.034076 1.034076 1.032164 1.032164 1.032164 1.032250 1.034330 1.034330 1.036822 1.034587 1.040684 Gly 1.074232	1.027194 1.029317 1.034538 1.039639 1.051868 1.074246 1.027103 1.027542 1.028415 1.029278 1.030134 1.027383 1.027383 1.027383 1.027383 1.027383 1.027383 1.027383 1.03981	1.021243 1.023324 1.028441 1.033439 1.045417 1.067330 1.021156 1.021587 1.022444 1.023292 1.024133 1.024965 1.021432 1.022493 1.022493 1.023547 1.025975 1.029734 20 %	0.0101 0.0253 0.0405 0.0759 0.1012 0.1315 0.0100 0.0200 0.0400 0.0599 0.0799 0.0799 0.0999	1.040984 1.041812 1.042636 1.044542 1.045892 1.047493 1.047199 1.043155 1.044493 1.045827 1.047150	1.038882 1.039692 1.040498 1.042360 1.043676 1.045240 1.038997 1.039651 1.040950 1.042231 1.043509 1.044776	L.035855 L.036650 L.037440 L.039265 L.040557 L.042089 Gly L.035956 L.036585 L.037834 L.039066 L.040294 L.041512	1.031958 1.032742 1.03521 1.035323 1.036599 1.038115 Phe 1.032060 1.032680 1.032680 1.035130 1.035130 1.037544 Val 1.074234	1.027166 1.027924 1.028678 1.030420 1.031653 1.033116 1.027278 1.027278 1.027891 1.029110 1.030311 1.031508 1.032695	1.021232 1.021948 1.022681 1.024373 1.025570 1.026997 1.021342 1.021342 1.021348 1.024398 1.025604 1.026800

Journal of Chemical & Engineering Data

Table 3.	Continu	ıed											
т			$ ho/g\cdot$	cm^{-3}			т			ho/g .	cm^{-3}		
0.1473	1.091624	1.088166	1.084645	1.081033	1.077605	1.074082	0.0416	1.085928	1.082571	1.079172	1.075702	1.072294	1.068896
0.2455	1.096691	1.093173	1.089535	1.085768	1.082277	1.078615	0.0780	1.087755	1.084399	1.080952	1.077397	1.073923	1.070449
0.4910	1.108876	1.105234	1.101315	1.097177	1.093531	1.089531	0.1040	1.089046	1.085691	1.082210	1.078597	1.075075	1.071547
0.9820	1.131293	1.127477	1.123073	1.118271	1.114350	1.109695	0.1352	1.090579	1.087227	1.083704	1.080023	1.076443	1.072854
			Gly	Leu						Gly	Phe		
0.0101			1.077513	1.074139	1.070799	1.067476	0.0095	1.084390	1.081015	1.077652	1.074275	1.070932	1.067621
0.0201			1.077909	1.074530	1.071182	1.067844	0.0189	1.084959	1.081566	1.078184	1.074799	1.071446	1.068133
0.0402			1.078699	1.075309	1.071945	1.068578	0.0379	1.086100	1.082671	1.079249	1.075850	1.072476	1.069158
0.0602			1.079478	1.076075	1.072697	1.069300	0.0568	1.087226	1.083760	1.080297	1.076885	1.073490	1.070166
0.0803			1.080253	1.076837	1.073444	1.070017	0.0758	1.088347	1.084844	1.081338	1.077914	1.074498	1.071168
0.1004			1.081019	1.077589	1.074183	1.070725	0.0947	1.089452	1.085912	1.082359	1.078927	1.075490	1.072153
			Gly	Asn									
0.0100			1.077812	1.074429	1.071090	1.067774							
0.0250			1.078858	1.075454	1.072105	1.068777							
0.0400			1.079898	1.076474	1.073113	1.069774							
0.0750			1.082299	1.078830	1.075441	1.072075							
0.1000			1.083995	1.080495	1.077083	1.073698							
0.1300			1.086007	1.082471	1.079032	1.075621							
						5% (w/	w) 2. 3-Bu	tanediol					
			Gly	Gly		0.12 (11)	, _,c			Gly	Val		
0.0098	1.002553	1.000870	0.998137	, 0.994534	0.990175	0.985180	0.0100	1.002563	1.000896	0.998163	0.994555	0.990185	0.985184
0.0490	1.004751	1.003037	1.000264	0.996640	0.992223	0.987191	0.0250	1.003404	1.001749	0.999001	0.995377	0.990969	0.985946
0.1469	1.010158	1.008370	1.005498	1.001824	0.997268	0.992140	0.0401	1.004247	1.002604	0.999840	0.996200	0.991755	0.986709
0.2448	1.015449	1.013591	1.010622	1.006901	1.002208	0.996987	0.0752	1.006192	1.004577	1.001775	0.998099	0.993567	0.988472
0.4896	1.028189	1.026168	1.022976	1.019141	1.014121	1.008670	0.1003	1.007571	1.005976	1.003146	0.999443	0.994852	0.989722
0.9791	1.051649	1.049365	1.045782	1.041762	1.036165	1.030274	0.1304	1.009213	1.007639	1.004777	1.001041	0.996379	0.991210
			Gly	Leu						Gly	Phe		
0.0100			0.998104	0.994493	0.990146	0.985153	0.0100	1.002760	1.001064	0.998323	0.994707	0.990352	0.985363
0.0200			0.998603	0.994979	0.990629	0.985629	0.0199	1.003508	1.001793	0.999034	0.995399	0.991033	0.986041
0.0400			0.999596	0.995946	0.991591	0.986576	0.0398	1.005005	1.003250	1.000455	0.996783	0.992396	0.987396
0.0599			1.000577	0.996900	0.992540	0.987510	0.0597	1.006492	1.004697	1.001865	0.998156	0.993749	0.988740
0.0799			1.001555	0.997851	0.993486	0.988441	0.0796	1.00796	1.006133	1.003266	0.999519	0.995091	0.990073
0.0999			1.002526	0.998794	0.994425	0.989364	0.0995	1.009433	1.007559	1.004655	1.000871	0.996422	0.991395
			Gly	Asn									
0.0100			0.998384	0.994775	0.990424	0.985430							
0.0249			0.999543	0.995918	0.991557	0.986550							
0.0399			1.000704	0.997062	0.992691	0.987672							
0.0748			1.003383	0.999702	0.995309	0.990258							
0.0998			1.005284	1.001574	0.997166	0.992092							
0.1297			1.007536	1.003793	0.999366	0.994264							

The partial molar volumes for the side chains and their transfer volumes at different temperatures have been calculated from the corresponding data of amino acids and dipeptide aqueous solutions respectively to compare and discuss the differences.

EXPERIMENTAL SECTION

Materials. The dipeptide glycylglycine (GlyGly) (CAS number 61499-00-1) was of Lancaster, U. K. make with a mole purity of 98 %. Glycylalanine (glyala) (CAS number 53483-93-9), glycylvaline (GlyVal) (CAS number 89458-24-2), glycylleucine (GlyLeu) (CAS number 869-19-2), glycylphenylalanine (GlyPhe) (CAS number 21438-66-4), and glycylasparagine

(GlyAsn) (CAS number 2058-58-4) were of Sigma make with purities of 99 % on mole basis. These substances were used as received. However the samples were dried in vacuum over P_2O_5 in a desiccator for 72 h at room temperature. Sucrose of extra pure grade was purchased from HIGHMEDIA, India. 2,3-Butanediol of analytical reagent grade quality was locally purchased. The additive substances were also kept and dried over P_2O_5 in vacuum desiccator to avoid any moisture contamination.

Methods. The solutions of different molalities were prepared in fresh, degassed, and four times distilled water by mass measurements of the solute samples, accurate to \pm 0.01 mg. A single pan analytical balance, (Dhona 100 DS, India) was used. The solutions were prepared fresh, and the measurements were

Figure 1. Apparent molar volume versus molality plots for dipeptides in additive aqueous solutions at T = 303.15 K: (a) 5 % (w/w) sucrose; (b) 10 % (w/w) sucrose; (c) 20 % (w/w) sucrose; (d) 5 % (w/w) 2,3-butanediol: \triangle , GlyGly; \times , GlyVal; \bigcirc , GlyLeu; \square , GlyPhe; \blacksquare , GlyAsn.

completed on the same day. The dipeptides are considered as solutes and the additives as cosolute. Densities of the solutions were measured using a high-precision vibrating tube digital densimeter (model DMA 5000), Anton Paar, Austria. The densimeter was calibrated with air and four times distilled and freshly degassed water at each measuring temperature through a special adjustment procedure driven by in-built software. The repeatability of the temperature has been found to be \pm 0.003 K. The uncertainty in the temperature during the measurements, however, is \pm 0.01 K because Pt100 measuring sensors were used. The repeatability of densities for successive measurements was $\pm 1.2 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}$. The experimental densities of water and additive aqueous solutions along with the literature values^{20,21} at different temperatures are listed in Table 1. The absolute mean deviations between the experimental and the literature values was 2.8 · 10⁻⁶. Therefore, the precision and accuracy of reported densities for water are \pm $1.2 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}$ and $\pm 2.8 \cdot 10^{-6} \text{ g} \cdot \text{cm}^{-3}$, respectively.

RESULTS AND DISCUSSION

The experimental densities of the five dipeptides, namely, GlyGly, GlyVal, GlyLeu, GlyPhe, and GlyAsn, in water as well as in aqueous solutions of sucrose [(5 to 20) % (w/w)] and 2,3-butanediol, 5 % (w/w), at different temperatures are given in Tables 2 and 3. The apparent molar volumes, V_{O} were calculated from the relation,

$$V_{\varnothing} = M / \rho - (1000(\rho - \rho_{\rm o}) / m\rho\rho_{\rm o}) \tag{1}$$

where *M* is molar mass of the solute, *m* is the molality of the solute, and ρ and ρ_0 are the densities of the solutions and solvent, respectively. The standard partial molar volume, also known as partial molar volume at infinite dilution, \overline{V}_2^o , was then obtained by least-squares fitting to the linear equation:

$$V_{\emptyset} = \overline{V}_2^{\rm o} + S_{\rm v}m \tag{2}$$

in which S_v is the experimental slope.

Transfer Volumes. The transfer volumes for each of the dipeptides, ΔV° , from water to aqueous additive solutions were calculated by the relation,

$$\Delta V^{\circ} = \overline{V}_{2}^{\circ}(\text{in aqueous additive solutions}) - \overline{V}_{2}^{\circ}(\text{water})$$
 (3)

The results of ΔV° are summarized in Table 5. The temperature dependence of ΔV° values for dipeptides is depicted in Figure 3. No definite general trends could be noted in ΔV° variations with temperature. However, it can be seen from the data presented in the Table that ΔV° values are positive for GlyGly, GlyVal, and GlyAsn and increased continuously with the mass percent of the sucrose. This means that the GlyGly, GlyVal, and GlyAsn when added to sucrose solutions induce in general structure breaking among the cosolute molecules; at higher sucrose content, the cyclic structure of sucrose may be maximally broken, and the electrostriction effect is decreased in mixed additive/water system as compared to that in pure water. The latter effect contributes to the increase in volume of the solvent, that is, leads to more positive ΔV° values. Similarly the addition of these three dipeptides to 5 % 2,3-butanediol aqueous solutions has also been found have a structure-breaking effect, but the extent of the effect varied from dipeptide to dipeptide.

The ΔV° values for the solutions of GlyLeu and GlyPhe in 5 % and 10 % sucrose aqueous media were negative. The ΔV° values for the same dipeptides in 20 % sucrose solutions were however positive. This clearly indicates that the interactions between GlyLeu and GlyPhe-sucrose are not strong in the low mass percent of sucrose [(5 to 10) %] due to the presence of highly hydrophobic isobutyl and methylphenyl side chains. However, when the sucrose mass percent is increased to 20, considerable interactions between the -OH group of sucrose and zwitterionic centers of GlyLeu and GlyPhe can occur, leading to the breaking of cyclic sucrose structures. The ΔV° values for GlyLeu and GlyPhe are largely negative in 5 % 2,3-butanediol aqueous solutions. The negative ΔV° values result due to the electrostriction of water. 2,3-Butanediol as such has two terminal methyl groups which would push water-water interactions and contribute to strong electrostriction and at the same time interact with the solute species through hydrophobic-ion group interactions.

Side-Chain Partial Molar Volumes, $\overline{V}_{2,tr}^{o}$. The side-chain partial molar volumes, $\overline{V}_{2,tr}^{o}$ (\overline{V}_{2}^{o} of dipeptides/additive/water) – (\overline{V}_{2}^{o} GlyGly/additive/water)}, and their transfer volumes ΔV_{tr}^{o} {($\overline{V}_{2,tr}^{o}$ (dipeptides/additive/water – GlyGly/additive/water)) – ($\overline{V}_{2,tr}^{o}$ (dipeptides/water – GlyGly/water))}, for the three side chains, namely, isopropyl, isobutyl, and methylphenyl, were estimated.

Table 6 gives a comparison of the side-chain volumes as obtained from the volumetric data on corresponding amino acids and as well as dipeptide solutes. Clear and very significant differences in the partial molar volumes for the same side chain were noted depending upon the $\overline{V}_2^{\text{o}}$ of the base solutes, that is, amino acids or dipeptides. The partial molar volumes of a given side chain as

Table 4. Partial Molar Volume at Infinite Dilution ($\overline{V}_2^{\text{o}}$ in cm³·mol⁻¹) and Slope (S_v in cm³·kg·mol⁻²) for Dipeptide Aqueous Solutions at Different Temperatures

T/K	\overline{V}_2^{o}	$S_{ m v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$
				% (w/w)) Sucrose			
	(0	4	5	1	.0	2	20
				GlyGly				
283 15	74 73	1 42	75 38	2.13	75 72	2.01	75 99	1 38
200.10	(+0.01)	(+0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(+0.01)
293.15	76.06	2.07	(±0.01)	2.03	(±0.01)	1.88	(10.01)	(±0.01)
270.10	(+0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
303 15	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)
505.15	(+0.01)	(± 0.01)	(+0.01)	(± 0.01)	(+0.01)	(± 0.01)	(± 0.01)	(± 0.01)
313 15	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)
515.15	(+0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
222.15	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)	(±0.01)
525.15	(+0.01)	(± 0.01)	/0.03 (⊥0.01)	(± 0.01)	(±0.01)	(± 0.01)	(± 0.12)	(± 0.93)
222.15	(±0.01)	(±0.01)	(±0.01)	(± 0.01)	(±0.01)	(± 0.01)	(± 0.01)	(±0.01)
555.15	(+0.01)	(1001)	(10.01)	(1.3/	60.02	(1.3/	61.31	(0.01)
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
				GlyVal				
283.15	115.95	1.36	116.13	4.18	116.84	1.41	117.13	1.92
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
293.15	116.75	2.82	116.69	3.91	118.04	2.23	117.37	1.58
	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)
303.15	117.95	2.0	117.93	3.34	119.22	2.08	118.71	1.92
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
313.15	119.13	1.36	119.43	1.89	120.20	1.21	121.11	0.88
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.02)
323.15	121.37	1.36	121.36	3.23	122.17	1.32	122.94	1.18
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
333.15	122.86	0.82	123.16	1.68	122.12	1.63	125.11	0.63
	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)
				GlyLeu				
303.15	139.91	6.42	139.01	3.00	139.85	2.86	140.47	1.99
	(± 0.01)	(± 0.05)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.01)
313.15	141.66	3.00	140.10	2.33	140.53	3.87	141.09	4.59
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.04)
323.15	142.20	7.13	140.76	3.53	141.37	3.86	142.13	4.11
	(± 0.01)	(± 0.04)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.03)	(± 0.01)	(±0.03)
333.15	143.59	4.79	142.20	2.46	142.67	4.14	143.72	4.78
	(± 0.01)	(± 0.04)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.04)
				GlyPhe				
283.15	152.24	2.46	148.82	3.99	150.21	3.00	153.21	3.66
	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)
293.15	154.55	0.99	151.05	4.38	153.04	3.00	155.13	4.45
	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(±0.04)
303.15	155.69	4.33	152.99	2.99	155.65	3.00	157.12	7.03
	(±0.01)	(±0.03)	(±0.01)	(± 0.01)	(±0.01)	(± 0.01)	(± 0.01)	(±0.04)
313.15	157.36	1.99	155.75	1.99	156.72	3.47	158.21	5.42
-	(±0.01)	(± 0.01)	(±0.01)	(±0.01)	(± 0.01)	(±0.02)	(± 0.01)	(±0.03)
323.15	157.59	6.73	156.44	1.66	157.91	3.34	159.54	5.27
	(± 0.01)	(±0.05)	(±0.01)	(± 0.04)	(±0.01)	(± 0.03)	(±0.01)	(± 0.01)
333.15	158.71	4.32	157.02	2.46	158.04	3.54	160.06	6.33
	(± 0.01)	(±0.04)	(± 0.01)	(±0.02)	(± 0.01)	(±0.02)	(± 0.01)	(±0.01)

Journal of Chemical & Engineering Data

SHORT ARTICLE

T/K $\overline{V_2}$ S_* $\overline{V_2}$ S_* $\overline{V_2}$ S_* 303.15 111.80 2.66 114.29 4.18 114.99 3.43 116.02 (4.48) (4001) (±001)	Table 4. C	ontinued									
B33.5 11.1.8 2.6.6 114.29 4.1.8 114.99 3.4.3 11.6.0 (4.0.0) 13.15 (11.20) 3.33 115.34 4.00 (15.85 4.21 11.7.4 3.68 13.15 (14.00) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) (±0.01) 32.15 (13.79 4.09 116.00 5.44 116.03 6.18 118.18 4.88 (±0.01) <th>T/K</th> <th>$\overline{V}_2^{\mathrm{o}}$</th> <th>$S_{ m v}$</th> <th>$\overline{V}_2^{\mathrm{o}}$</th> <th>$S_{\rm v}$</th> <th>$\overline{V}_2^{\mathrm{o}}$</th> <th>$S_{\rm v}$</th> <th>$\overline{V}_2^{\mathrm{o}}$</th> <th>$S_{\rm v}$</th>	T/K	$\overline{V}_2^{\mathrm{o}}$	$S_{ m v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$	$\overline{V}_2^{\mathrm{o}}$	$S_{\rm v}$		
303.15 111.80 2.66 114.29 4.18 114.99 3.43 116.00 (\pm 0.01) 313.15 112.00 3.33 115.34 4.00 (\pm 0.01) (\pm 0.01)					GlyAsn						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	303.15	111.80	2.66	114.29	4.18	114.99	3.43	116.02	4.48		
313.15 112.90 3.33 115.34 4.00 115.85 4.21 117.42 3.68 (± 0.01) <		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(±0.03)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	112.90	3.33	115.34	4.00	115.85	4.21	117.42	3.68		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(±0.3)	(± 0.01)	(± 0.01)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	113.79	4.09	116.00	5.44	116.63	6.18	118.18	4.88		
333.15 115.09 4.09 117.32 5.01 117.98 5.23 119.01 5.23 (±0.01) (±0.03) (±0.01) <td></td> <td>(± 0.01)</td> <td>(± 0.03)</td> <td>(± 0.01)</td> <td>(± 0.04)</td> <td>(± 0.01)</td> <td>(± 0.03)</td> <td>(± 0.01)</td> <td>(±0.02)</td>		(± 0.01)	(± 0.03)	(± 0.01)	(± 0.04)	(± 0.01)	(± 0.03)	(± 0.01)	(±0.02)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	333.15	115.09	4.09	117.32	5.01	117.98	5.23	119.01	5.23		
S%(w/w) 2,3-Butanediol GlyCly GlyLa GlyCh GlyCh 283.15 75.66 1.89 117.76 1.23 146.07 2.43 (±001) (±001) (±001) (±001) (±001) (±001) (±001) 293.15 76.47 1.75 117.01 1.68 148.19 2.55 (±001) (±001) (±001) (±001) (±001) (±002) (±001) (±002) 303.15 77.58 1.61 118.23 1.99 138.22 2.47 150.24 2.48 (±001)		(± 0.01)	(± 0.03)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)		
GyGy $GyVa$ $GyLa$ $GyPa$ 283.15 75.66 1.89 117.67 1.23 146.07 2.43 (±00) (±001) (±001) (±001) (±001) (±001) 293.15 76.74 1.75 117.01 1.68 148.19 2.55 (±001) (±001) (±002) (±001) (±002) (±010) (±002) 303.15 77.58 1.61 118.23 1.99 138.22 2.47 150.24 2.48 (±001) (±001) (±001) (±001) (±002) (±001) (±002) 3.01 (±010) (±001) (±001) (±001) (±001) (±001) (±001) (±001) 323.15 79.81 1.41 112.37 1.64 14049 3.13 153.82 3.08 (±010) (±010) (±010) (±010) (±010) (±010) (±010) (±010) (±010) (±010) 33.15 80.94 1.42 124.31 0.66 141.73 3.34 154.63 35.5 (±0				5 9	% (w/w) 2,3-Butane	ediol					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Gly	Gly	Gly	vVal	Gly	Leu	Gly	GlyPhe		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	283.15	75.66	1.89	117.76	1.23			146.07	2.43		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)			(± 0.01)	(± 0.04)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	293.15	76.47	1.75	117.01	1.68			148.19	2.55		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)			(± 0.01)	(±0.02)		
$\begin{array}{c c c c c c c } & (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.02) & (\pm 0.01) & (\pm 0.02) \\ \hline 313.15 & 78.20 & 1.55 & 119.49 & 2.24 & 139.85 & 3.08 & 152.39 & 3.01 \\ \hline (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.03) & (\pm 0.01) & (\pm 0.04) & (\pm 0.01) & (\pm 0.01) \\ \hline 323.15 & 79.81 & 1.41 & 112.37 & 1.64 & 140.49 & 3.13 & 153.82 & 3.02 \\ \hline (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.02) & (\pm 0.01) & (\pm 0.03) & (\pm 0.01) & (\pm 0.01) \\ \hline 333.15 & 80.94 & 1.42 & 124.31 & 0.66 & 141.73 & 3.34 & 154.63 & 3.55 \\ \hline (\pm 0.01) & (\pm 0.03) & (\pm 0.01) & (\pm 0.02) \\ \hline \\ \hline \\ 333.15 & 112.02 & 4.01 & (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.03) & (\pm 0.01) & (\pm 0.02) \\ \hline \\ 313.15 & 112.02 & 4.01 & (\pm 0.01) & (\pm 0.01) & (\pm 0.01) & (\pm 0.03) & (\pm 0.01) & (\pm 0.02) \\ \hline \\ 313.15 & 113.24 & 4.40 & (\pm 0.01) & (\pm 0.02) \\ \hline \\ 323.15 & 114.05 & 4.36 & (\pm 0.01) \\ \hline \\ 333.15 & 115.12 & 4.78 & (\pm 0.01) \\ \hline \\ $	303.15	77.58	1.61	118.23	1.99	138.22	2.47	150.24	2.48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)	(± 0.01)	(±0.02)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	313.15	78.20	1.55	119.49	2.24	139.85	3.08	152.39	3.01		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.04)	(± 0.01)	(± 0.01)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	323.15	79.81	1.41	112.37	1.64	140.49	3.13	153.82	3.02		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.02)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.01)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	333.15	80.94	1.42	124.31	0.66	141.73	3.34	154.63	3.55		
303.15 112.02 4.01 (± 0.01) (± 0.01) 313.15 113.24 4.40 (± 0.01) (± 0.02) 323.15 114.05 4.36 (± 0.01) (± 0.01) 333.15 115.12 4.78 (± 0.01) (± 0.01)		(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.01)	(± 0.03)	(± 0.01)	(± 0.02)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Gly	Asn								
$\begin{array}{cccc} (\pm 0.01) & (\pm 0.01) \\ \\ 313.15 & 113.24 & 4.40 \\ (\pm 0.01) & (\pm 0.02) \\ \\ 323.15 & 114.05 & 4.36 \\ (\pm 0.01) & (\pm 0.01) \\ \\ 333.15 & 115.12 & 4.78 \\ (\pm 0.01) & (\pm 0.01) \end{array}$	303.15	112.02	4.01								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)								
$\begin{array}{cccc} (\pm 0.01) & (\pm 0.02) \\ 323.15 & 114.05 & 4.36 \\ (\pm 0.01) & (\pm 0.01) \\ 333.15 & 115.12 & 4.78 \\ (\pm 0.01) & (\pm 0.01) \end{array}$	313.15	113.24	4.40								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.02)								
$\begin{array}{ccc} (\pm 0.01) & (\pm 0.01) \\ 333.15 & 115.12 & 4.78 \\ (\pm 0.01) & (\pm 0.01) \end{array}$	323.15	114.05	4.36								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(± 0.01)	(± 0.01)								
(± 0.01) (± 0.01)	333.15	115.12	4.78								
		(±0.01)	(±0.01)								

-CH2-CH Isobutyl

- CH2-

calculated using \overline{V}_2^{o} of dipeptides were smaller as compared to the values derived from \overline{V}_2^{o} of amino acids. These observed differences can be explained by taking into the consideration of the fact that the charged $-NH_3^+$ and $-COO^-$ groups are positioned differently in amino acids and dipeptides structures. The two charged functional groups are adjacent to the side chains in amino acids and while the side chains in dipeptides are adjacent only to $-COO^{-}$ groups. Moreover, the electrostriction of $-NH_{3}^{+}$ and $-COO^{-}$ groups and the contribution to \overline{V}_{2}^{o} for a side chain will be more positive in amino acids than for glycyl dipeptides due to the shielding of the side chains in amino acids. The partial molar volumes for the carboxylamide (-CH2CONH2) side chain as calculated from \overline{V}_2^{o} results of dipeptides however were higher. Hence it can be concluded that the carboxylamide side chain hardly undergoes any shielding effect. $\Delta V^{\rm o}_{\rm tr}$ are small and negative for the isopropyl side chain, and the same becomes more negative for the isobutyl and methylphenyl side chains irrespective of the contributions derived either from amino acid or dipeptides solutes. The $\Delta V^{\rm o}_{\rm tr}$ was more positive for the carboxylamide side chain when dipeptides were used as base solutes in (5 to 20) % aqueous sucrose

	160							160	<u> </u>					0.047	
	150 -	•	•		-		a	150	F_			•	٥	•	-
	140		۰	0	0	0	-	140	1		0	0	۰	0	1
	130						-	130	ŀ		-				1
	120 ×	×	×	×	×	×		120	Ł			~	×	×	
	110		-	100			-	110	×	×		-			1
	100							100	F						1
	90							100	F						1
12.7	80	۵	۵	Δ	Δ	4	1	90	Ē						1
-lou	70						1	80	-	△	Δ	۵	Δ	۵	1
ш.	60 L	290	300	310	320	330	34	0 2	80	290	300	310	320	330	340
CE	170		a. a. a.		-8777-04	105050	_	160	_	1992					-
50	160	-		0	•		c]	150			٥	u		100	b
-	150 -						-	140	ŀ		0	0	0	0	-
	140		۰	0	0	0	1	130	ŀ						-
	130				×	×	1	120	F.	×	×	×	×	×	-
	120 ×	×	×	×.	Î	•	-	110	F,						-
	100						3	100	F						+
	90-						-	90	F						-
	80-		^	۵	Δ	۵	-	80	F	۵	۵	Δ	۵	۵	-
	70	•	5				1	70	F						-
	60	200	200	210	220	220		69	[200	300	310	320	330	340
	280	290	300	510	520	330	- 54	0 2	00	290	500	510	520	550	540

T/K

Figure 2. Temperature dependence of partial molar volumes at infinite dilution, \overline{V}_2° of dipeptides in aqueous additive solutions: (a) 5 % (w/w) sucrose; (b) 10 % (w/w) sucrose; (c) 20 % (w/w) sucrose; (d) 5 % (w/w) 2,3-butanediol: \triangle , GlyGly; ×, GlyVal; \bigcirc , GlyLeu; \Box , GlyPhe; \blacksquare , GlyAsn.

-												
T/K	283.15	293.15	303.15	313.15	323.15	333.15	283.15	293.15	303.15	313.15	323.15	333.15
sucrose in % (w/v)												
			Gly	<i>r</i> Gly					Gly	vVal		
5	0.65	0.26	0.29	0.37	0.18	0.31	0.18	-0.06	-0.02	0.3	-0.01	0.30
10	0.99	0.41	0.58	1.00	0.78	1.10	0.89	1.29	1.27	1.07	0.80	-0.74
20	1.26	0.62	0.83	1.82	1.45	1.99	1.18	0.62	0.76	1.98	1.57	2.25
5 % 2,3-butanediol												
	0.93	0.41	0.54	0.6	1.14	1.42	1.81	0.26	0.28	0.36	0.99	1.45
sucrose in % (w/v)												
			Gly	Leu					Gly	Phe		
5			-0.90	-1.56	-1.44	-1.39	-3.42	-3.50	-2.70	-1.61	-1.15	-1.69
10			-0.06	-1.13	-0.83	-0.92	-2.03	-1.51	-0.04	-0.64	0.32	-0.67
20			0.56	-0.57	-0.07	0.13	-3.42	-3.50	-2.70	-1.61	-1.15	-1.69
5 % 2,3-butanediol												
			-1.69	-1.81	-1.71	-1.86	-2.03	-1.51	-0.04	-0.64	0.32	-0.67
sucrose in % (w/v)												
			Gly	Asn								
5			2.49	2.44	2.21	2.23						
10			3.19	2.95	2.84	2.89						
20			4.22	4.52	4.39	3.92						
5 % 2,3-butanediol												
			0.22	0.34	0.26	0.03						

Table 5. Transfer Volumes (ΔV° in cm³·mol⁻¹) for Dipeptides in Sucrose and 2,3-Butanediol Aqueous Solutions at Different Temperatures

Figure 3. Temperature dependence of transfer volumes, ΔV° (eq 3) for dipeptides: (a) 5 % (w/w) sucrose; (b) 10 % (w/w) sucrose; (c) 20 % (w/w) sucrose; (d) 5 % (w/w) 2,3-butanediol: \triangle , GlyGly; ×, GlyVal; \bigcirc , GlyLeu; \Box , GlyPhe; \blacksquare , GlyAsn.

Table 6. (Comparison of Side Chain Partial Molar Volumes (7	\overline{V}_2° in cm ³ ·mol ⁻¹), and Transfer Volumes ($\Delta V_{tr,water \rightarrow additives}^{\circ}$ in
cm ³ ·mol ⁻	¹) for Dipeptides and Amino Acids ^{<i>a</i>} in Sucrose and	2,3-Butanediol Aqueous Solutions at Different Temperatures
T/K		ΛV°

1 / 15			V_{2} , tr						Δr ir water \rightarrow additives							
	5 % suci	ose	10 %	sucrose	20 %	sucrose	5 % 2,3-1	outanediol	5 % si	icrose	10% s	ucrose	20 %	SUCTOSE	5 % 2,3-bi	utanediol
												Side	chain	сн3		
	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid	Di- peptide	Amino Acid
283.15	40.75	46.71	41.12	46.58	41.14	46.00	42.10	46.51	-0.47	-0.39	-0.1	-0.52	-0.08	-1.10	0.88	-0.59
293.15 303.15 313.15	40.37 40.60 41.46	46.40 47.11 47.60	41.57 41.60 41.60	46.51 46.83 47.28	40.69 40.84 41.69	46.43 46.81 47.05	40.54 40.65 41.29	46.76 46.25 46.55	-0.32 -0.31 -0.07	-0.87 -0.19 -0.39	0.88 0.69 0.07	-0.76 -0.47 -0.71	0.00 -0.07 0.16	-0.84 -0.49 -0.94	-0.15 -0.26 -0.24	-0.51 -1.05 -1.44
323.15 333.15	42.51 43.33	47.92 48.04	42.72 41.50	47.34 48.38	42.82 43.60	47.51 48.14	42.55 43.37	47.18 48.18	-0.19 -0.01	-0.01 -0.56	0.02 -1.84	-0.59 -0.22	0.12 0.26	-0.42 -0.46	-0.15 0.03	-0.75 -0.42
											Sid	e chain	—сн₂-сн∕	СН3 СН3		
303.15	61.69	61.66	62.23	62.65	62.60	62.59	60.64	62.92	-1.18	-2.61	-0.64	-1.62	-0.27	-1.68	-2.23	-1.35
323.15 323.15 333.15	61.91 62.37	62.34 62.47 62.24	61.93 61.92 62.05	63.64 63.95	62.01 62.21	62.46 62.73 62.73	60.68 60.79	63.31 63.72	-1.93 -1.62 -1.7	-2.73 -2.63 -3.09	-2.13 -1.61 -2.02	-2.24 -1.46 -1.38	-2.39 -1.52 -1.86	-2.81 -2.37 -2.60	-2.41 -2.85 -3.28	-2.40 -1.79 -1.60
												Side ch	- c	CH2-		
303.15	75.66	75.74	77.98	75.38	79.25	76.05	72.66	76.10	-2.99	-2.51	-0.65	-2.87	0.60	-2.20	-5.99	-2.15
323.15 333.15	77.59 77.19	76.00 76.00 77.65	78.46 77.42	76.30 76.99 78.06	78.79 79.42 78.55	76.69 76.99	74.01 73.69	76.36 77.29 78.11	-1.98 -1.33 -2.00	-2.71 -3.20 -2.07	-0.46 -1.77	-2.47 -2.21 -1.66	-0.97 0.50 -0.65	-2.76 -2.51 -2.73	-5.57 -4.91 -5.50	-2.21 -1.91 -1.61
												Side ch	ain -C	H ₂ CONH ₂		
303.15 313.15	36.96 37.37	35.77 35.80	37.37 37.25	36.13 36.44	38.15 38.00	36.97 36.71	34.44 35.04	37.19 37.78	2.20 2.07	0.51 0.78	2.61	0.87 1.42	3.39 2.70	1.71 1.69	-0.32 -0.26	1.93 2.76
323.15 333.15	37.15 37.49	36.43 37.52	37.18 37.36	37.36 37.83	38.06 37.50	37.13 37.12	34.24 34.18	37.85 37.98	2.03 1.92	1.22 1.37	2.06 1.79	2.15 1.68	2.94 1.93	1.92 0.97	-0.88 -1.39	2.64 1.83
* Unpu	ıblished d	ata														
Unpub	lished da	ata.														

solutions. The temperature dependence of the $\Delta V^{\rm o}{}_{\rm tr}$ for different side chain groups is depicted in Figure 4. It can be seen that the variations with the temperature are complex, and hence no

generalizations could be made. The increase in temperature may cause several effects such as volume expansion due to thermal motion, enhancement of structure-breaking effects, and also even

Figure 4. Temperature dependence of transfer volumes ($\Delta V^{\circ}_{water \rightarrow additives}$) for different side chains: (a) isopropyl, (b) isobutyl, (c) methylphenyl, and (d) CH₂CONH₂ in additive aqueous solutions: sucrose: •, 5 % (w/w); \blacktriangle , 10 % (w/w); \lor 20 % (w/w); and 2,3-butanediol: right-pointing triangle, 5 % (w/w).

contribute to structure-making effects. The balance of these effects, however, depends upon the nature and energetics of multiple interactions within the complex ternary systems. Which of these factors is predominant is difficult to predict and beyond the scope of the present investigation. Otherwise, the negative ΔV^{o}_{tr} values indicate the dominance of overall structure-breaking type interactions as far as GlyVal, GlyLeu, and GlyPhe/additive/water ternary systems are concerned. On the other hand the positive ΔV^{o}_{tr} values can be attributed to the structure-making type interactions in GlyAsn/ additive/water systems.

AUTHOR INFORMATION

Corresponding Author

*Fax: 0091-2692- 237258. E-mail: nvsastry_17@rediffmail.com.

Funding Sources

The authors thank the university Grants Commission, New Delhi for sponsoring the work under a major research project No. F12-82/2001 (SR-1).

REFERENCES

(1) Lapange, S. Physicochemical Aspects of Protein Denaturation; Wiley: New York, 1978.

(2) Hardt, C. R.; Huddelson, I. F.; Ball, C. D. An electrophoretic analysis of changes produced in blood serum and plasma proteins by heat in presence of sugars. *J. Biol. Chem.* **1946**, *163*, 211–220.

(3) Lakshmi, T. S.; Nandi, P. K. Effects of sugar solutions on the activity coefficients of aromatic amino acids and their N-acetyl ethyl esters. *J. Phys. Chem.* **1976**, *80*, 249–252.

(4) Simpson, R. B.; Kauzmann, K. The kinetics of protein denaturation. III. the optical rotations of serum albumin, beta-lactoglobulin and pepsin in urea solutions. *J. Am. Chem. Soc.* **1953**, *75*, 5154–5157.

(5) Lee, J. C.; Timasheff, S. N. The stabilization of proteins by sucrose. J. Biol. Chem. 1981, 256, 7193-7201.

(6) Mishra, A. K.; Ahluwalia, J. C. Enthalpies, heat capacities and apparent molal volumes of transfer of some amino acids from water to aqueous t-butanol. *J. Chem. Soc., Faraday Trans. I* **1981**, *77*, 1469–1483.

(7) Prasad, K. P.; Ahluwalia, J. C. Heat capacities of transfer of some amino acids and peptides from water to aqueous urea solution. *Biopolymers* **1980**, *19*, 273–284.

(8) Palecz, B. Enthalpies of solution of some L- α -amino acids in aqueous solutions of urea at 298.15 K. J. Therm. Anal. **1998**, 54, 265–269.

(9) Enea, O.; Jolicoeur, C. Heat capacities and volumes of several oligopeptides in urea – water mixtures at 25 °C. Some implications for protein unfolding. *J. Phys. Chem.* **1982**, *86*, 3870–3881.

(10) Bhat, R.; Kishore, N.; Ahluwalia, J. C. Thermodynamic studies of transfer of some amino acids and peptides from water to aqueous glucose and sucrose solutions at 298.15 K. J. Chem. Soc., Faraday Trans. I **1988**, *84*, 2651–2665.

(11) Hakin, A. W.; Liu, J. L.; O'Shea, M.; Zorzetti, B. Thermodynamics of protein model compounds: apparent molar volumes and isobaric heat capacities of selected cyclic dipeptides and their transfer properties from water to aqueous urea solutions at T = 298.15 K. *Phys. Chem. Chem. Phys.* **2003**, *5*, 2653–2657.

(12) Banipal, T. S.; Singh, G.; Lark, B. S. Partial molar volumes of transfer of some amino acids from water to aqueous glycerol solutions at 25 °C. *J. Solution Chem.* **2001**, *30*, 657–670.

(13) Banipal, T. S.; Kaur, D.; Lal, P.; Singh, G.; Banipal, P. K. Densities and viscosities of glycine, DL-a-alanine, DL- α -amino-n-buty-ric acid and l- leucine in aqueous 1,2-propanediol solutions at 298.15 K. *J. Chem. Eng. Data* **2002**, 47, 1391–1395.

(14) Li, S.; Sang, W.; Lin, R. Partial molar volumes of glycine, l-alanine, and l-serine in aqueous glucose solutions at T = 298.15 K. J. Chem. Thermodyn. 2002, 34, 1761–1768.

(15) Pal, A.; Kumar, S. Volumetric and viscometric studies of glycine in binary aqueous solutions of sucrose at different temperatures. *Indian J. Chem.* **2005**, *44A*, 469–475.

(16) Pal, A.; Kumar, S. Volumetric properties of l-alanine and l-valine in aqueous sucrose solutions at T = (288.15 and 308.15) K. *J. Chem. Thermodyn.* **2005**, *37*, 1085–1092.

(17) Takekiyo, T.; Imai, T.; Kato, M.; Taniguchi, Y. Temperature and pressure effects on conformational equilibria of alanine dipeptide in aqueous solutions. *Biopolymers* **2004**, *73*, 283–290.

(18) Pratt, L. R.; Pohorille, A. Hydrophobic effects and modeling biophysical aqueous solution interface. *Chem. Rev.* **2002**, *102*, 2671–2692.

(19) Chalikian, T. V.; Sarvazyan, A. P.; Breslauer, K. J. Partial molar volumes, expansibilities, and compressibilities of alpha, omega-aminocarboxylic acids in aqueous solutions between 18 and 55 °C. *J. Phys. Chem.* **1993**, *97*, 13017–13026.

(20) Bettin, H.; Spieweck, F. The densities of water as a function of temperature. *PTB-Mitt.* **1990**, *100*, 195–196.

(21) Hu, Y. F.; Zhang, Z. X.; Zhang, Y. H.; Fan, S. S.; Liang, D. Q. Viscosity and density of the nonelectrolyte system manitol + sorbitol + sucrose + H_2O and its binary and ternary subsystems at 298.15 K. *J. Chem. Eng. Data* **2006**, *51*, 438–442.